Available online at www.sciencedirect.com

. JOURNAL OF
scnsucs@nmscr SOUND AND
EX s VIBRATION
LSEVIER Journal of Sound and Vibration 277 (2004) 691710

www.elsevier.com/locate/jsvi

Micro-control actions of actuator patches laminated on
hemispherical shells

P. Smithmaitrie, H.S. Tzou*

StrucTronics Lab, Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506-0503, USA
Received 20 May 2002; accepted 5 September 2003

Abstract

Spherical shell-type structures and components appear in many engineering systems, such as radar
domes, pressure vessels, storage tanks, etc. This study is to evaluate the micro-control actions and
distributed control effectiveness of segmented actuator patches laminated on hemispheric shells.
Mathematical models and governing equations of the hemispheric shells laminated with distributed
actuator patches are presented first, followed by formulations of distributed control forces and micro-
control actions including meridional/circumferential membrane and bending control components. Due to
difficulties in analytical solution procedures, assumed mode shape functions based on the bending
approximation theory are used in the modal control force expressions and analyses. Spatially distributed
electromechanical actuation characteristics resulting from various meridional and circumferential actions
of segmented actuator patches are evaluated. Distributed control forces, patch sizes, actuator locations,
micro-control actions, and normalized control authorities of a free-floating hemispheric shell are analyzed
in case studies. Parametric analysis indicates that (1) the control forces and membrane/bending components
are mode and location dependent, (2) actuators placed near the free boundary contributes the most
significant control actions, and (3) the meridional/circumferential membrane control actions dominate the
overall control effect.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Radar domes, pressure vessels, storage tanks, etc. often take the form of spherical shells.
Dynamic characteristics and vibrations of spherical shells and structures have been investigated
over the years [1-5]. Natural frequencies of a shallow spherical shell and a thin hemisphere shell
with free boundary condition have been investigated and experimentally verified [6,7]. Dynamic
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modal sensing characteristics, distributed modal voltages, and micro-signal components of
spherical shells of revolution laminated with distributed piezoelectric sensor layers were recently
investigated [8]. Actuations of spherical shells with piezoceramic actuators were also studied
[9—11], so the conical shells and deep paraboloidal shells [12,13]. This study evaluates microscopic
electromechanical actuation and control effectiveness of segmented patch actuators laminated on
hemispherical shells.

Mathematical modelling of spherical shells coupled with distributed actuators is presented first,
followed by the analysis of actuator induced forces and micro-control actions respectively in the
meridional, circumferential, and transverse directions. In order to evaluate modal dependent
distributed micro-control actions, assumed mode shape functions based on the bending
approximation theory are used in the formulation of control forces and their contributing
microscopic actions in the modal domain. Detailed control forces, contributing meridional and
circumferential membrane/bending micro-control actions, and normalized control effects of free-
hemispheric shells with various design parameters (e.g., actuator patch locations, shell thickness,
and shell radius of curvature, etc.) are evaluated in case studies.

2. Segmented distributed actuator patches on spherical shell

It is assumed that an arbitrary segmented piezoelectric actuator patch defined from ¢, to ¢, in
the meridional direction and from y,; to i, in the circumferential direction is laminated on the
hemispherical shell; Fig. 1. By the thin shell approximation, the radius of curvature of the actuator
patch is (R-+h/2+ h"/2)~R, and the effective actuator area is approximately R>*(y, — /)
(cos ¢p; — cos ¢5).

If the electrode resistance is neglected, the control voltage on the segmented patch is constant.
Thus, an actuator control voltage ¢“(¢, ¥, 1) applied to the distributed actuator patch can be
defined by

(b, 1) = P Dlus(d — ¢1) — us(d — P)us(b — Y1) — us(¥ — Y)], (1)

Fig. 1. An arbitrary actuator patch laminated on a hemispheric shell.
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where the superscript “a” denotes the induced actuator voltage; u(*) is a unit step function,
us(p — ¢*) = 1 when q5>gb ,and = 0 when ¢ <¢™. Accordingly, control actions induced by the
actuator patch include a control force N, in the ¢-direction, a control force Ny in the -
direction, a control moment M " in the ¢-direction, and a control moment My, in the y-direction
respectively and they are defined by

Nig = Ypds1¢“lus(dp — ¢1) — ud(d — P)llus(Y — b)) — us( — )], 2)
Nyy = Ypdad lus(d — ¢1) — us(d — )l — Y1) — us(h — ¥)], )
Mg, = r1Ypds1 ¢ lus(d — ¢1) — us(d — )l — Y1) — us(h — Y)], (4)
My, = 13 Ypdnd lus(d — ¢1) — us(d — )l — Y1) — us(b — )], ()

where Y), is the actuator elastic modulus; d3; is the piezoelectric strain constant; r{ defines the
distance measured from the neutral surface to the mid-plane of the actuator patch (i.e., the
moment arm); ¢“ is the imposed control voltage determined by control algorithms (e.g., open-
loop or closed-loop control) [14,15]. Substituting the control forces and moments into the system
equations of the spherical shell/actuator system and imposing the bending approximation theory
[8], i.e., Nypp = Nyy = Ngy = 0, yields the simplified governing equations:

Pu

35 (“Niy sin ) = (~Ng,)c0s b+ Qasin b+ Rapsing = Rsindoh s (©
o0 . Nyjy) + Qs sin ¢ + Rqy sin ¢ = Rsin ¢ph a;uz“’, (7)
% (Q¢3 sing) + 57 (sz) (=Ngy — Njy)sin ¢ + Rgs sin ¢ = Rsin ¢ph % (8)
and
g3 =4 s11n s { o0 (Myy — My,)sin @) + — a0 (Mv/qs) — (Myy — My,) cos ¢>], ©)
Qys = Rslnd) [64) (Myy sin §) + o (Mw My,) + My cos 4- (10)

The first two equations are respectively the meridional and the circumferential dynamic/control
equations; the third one is the transverse dynamic/control equation; and the last two define the
transverse shear effects contributed by elastic and control moments. Distributed control
components appear in all three equations and thus, open- or closed-loop distributed control of
spherical shells can be achieved. These three equations are fully coupled spherical shell/actuator
system equations and the membrane control effects are still preserved in the system equations,
although the elastic membrane forces of the spherical shell are neglected in the bending
approximation. Note that the objective of this study is to evaluate spatially distributed micro-
control actions of strategically placed actuator patches at various locations, not the hemispherical
shell dynamics. To focus on the micro-membrane and bending control characteristics, assumed
mode shape functions and natural frequencies resulting from the bending approximation theory
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are used in the parametric study of modal control forces contributed by distributed actuator
segments. Although the elastic membrane effects are essential to the fully-coupled shell dynamics,
they are neglected in the classical bending approximation theory.

3. Analysis of control actions in modal domain

The modal expansion assumption states that the displacement response u;(¢, ), ¢) in the ith
direction of the hemispherical shell is composed of all participating modes, i.e., u;(p,,1) =
S i O Ui(d,¥), i = ¢, 3. Imposing the modal expansion and the modal orthogonality and
including a viscous damping, one can derive the modal equation of the hemispherical shell as

Tk + 205 optic + o, = FP(0) + Fi(t) = Fi(0), (11)

where 7, is the modal participation factor; {; is the damping ratio {, = ¢/(2phwy); ¢ is the
damping constant; wy is the kth natural frequency; p is the mass density of the shell; F}"(¢) is the
mechanical excitation; Fi(7) is the electrical control excitation; k denotes the circumferential wave
number; and Fi(¢) is the total modal force. Fig. 2 shows the open-loop control of the
hemispherical shell system.

Recall that the modal electric control force Fy induced by the piezoelectric actuator patch
includes four control actions: a control force N¢ " in the ¢-direction, a control force Ny in the -
direction, a control moment M¢ , in the ¢-direction, and a control moment M, in the y-direction
defined previously. Although the elastic membrane forces are neglected in the bending
approximation, the membrane control forces are still preserved in the system equations, such
that their spatially distributed micro-control actions can still be evaluated. The assumed mode
shape functions based on the bending approximation theory are used to evaluate modal control
forces and microscopic control actions. The micro-control actions of actuator patches depend on
actuator characteristics, spatial locations, and modal behavior. Although the elastic membrane
effect of the shell will affect the modal behavior, it does not explicitly appear in micro-control
actions of actuator patches. Detailed modal control forces and micro-control actions of spherical
actuator patches are analyzed next.

3.1. Modal characteristics and modal control forces

Evaluation of modal micro-sensing and actuation characteristics of distributed and segmented
sensors/actuators depends on fundamental structural dynamics and free-vibration behavior. For a

R(D)

Fig. 2. Open-loop control of a hemispherical shell/actuator system.



P. Smithmaitrie, H.S. Tzou | Journal of Sound and Vibration 277 (2004) 691-710 695

free-edge boundary hemispherical shell with the bending approximation, the free-vibration mode
shape functions Uy (¢, ) are [1,8,16]

é k
Uppr = —4 <tan 5) sin ks, (12)
¢ k
Uyx = —Bsin ¢ <tan 5) cos ks, (13)
¢ k
Ui = CR(k + cos ¢) <tan 5) cos ki, (14)

where Uy is the meridional mode shape function; Uy is the circumferential mode shape function;
Uy 1s the radial (transverse) mode shape function; & is the circumferential wave number; ¢ is the
meridional angle measured from the pole; ¥ is the circumferential angle; and A4, B, and C are the
modal amplitudes. Natural frequencies of a shallow shell and a thin hemispherical shell with free
boundary condition have been studied and experimentally verified [6,7]. To evaluate the control
actions, the mechanical excitation is neglected and hence the modal control force Fi(7) is defined
by actuator induced forces,

pthk/l///(/){ZiLf(¢3)Uik}R2sinq§d¢dlp, =3, (15)

where Ny = | v /, ) O UI%C}R2 sin ¢ d¢ dys; L{(¢3) denotes a control operator derived from the
converse piezoelectric effect with a transverse control signal ¢; [17]. Detailed microscopic
membrane and bending control actions induced by actuator patches are analyzed next.

Fi(t) =

4. Micro-control actions of actuator patches

Micro-control actions of an arbitrary segmented actuator patch defined from ¢, to ¢, in the
meridional direction and from ¥/, to ¥, in the circumferential direction, Fig. 1, are evaluated in
this section. It is assumed that the actuator is made of a hexagonal piezoelectric material, i.c.,
d31 = d3 and both the actuator and the shell are of uniform thickness. Rewriting the modal
control force Fi(¢) in its meridional, circumferential, and transverse components respectively
yields

A 1 . ) )
B0 = o /w /¢ (LS () Ut + LS() Upi + LS(by) Use) Rosin pdpdy, (16)
or
() = w (T3 oret] = w (Frmod) + T + Fva)h  i=12. (7)

where (T%)7,,s denotes the overall actuation action determined by actuator location and modal
characteristics, but excluding material constants and modal amplitudes (assumed unity); (f"k_merd),
(Ti_cir) and (Ti_wans) respectively denote the actuation magnitudes in the meridional,
circumferential and transverse directions defined next. Note that design parameters AN are
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included in control action expressions and ds; is the piezoelectric constant which will be
specifically defined with respect to these control actions later, although d3; = d3; in commonly
used piezoelectric materials. Since the piezoelectric strain constants d3; = ds; and the effective
distance (i.e., moment arm) r{ =r§ = r“, both the control membrane forces and the control
moments are equal, i.e., NS, = N¢ and M¢S, = M¢ . Using the control force and moment
definitions of the actuator patch bounded by ¢, to ¢, and ¥ to ¥,, substituting the mode shape
functions and keeping two design parameters AN; in control actions, one can rewrite the
meridional and the circumferential control forces of spherical actuator patches as

2
thk/ /L¢(¢3)U¢kR sin ¢ d¢p dys

W,
= / / (tan ) sinky sin ¢ - (R + 1) - Yyds1 ¢

PhNk
[0(¢p — B1) — (¢ — P)us(W — Y1) — us(Y — Y,)] dep dyr

»d k
= th;l]f A (tan ﬁ) -sin ¢y — (tan %) -sin qu] (cos kyry — cos kyr,)

_ Y,d319°(1)
p

S(R+719)-

[(Tk_merd)]a (18)
/ / Ly(¢3) Uy R sin ¢ d¢p dys

2 . d) k “ P
= thk /1 /1 Bsm¢<tan§> cosky - (R+1) - Yydn¢p
us(p — 1) — u(@ — PINOW — ) — 0 — yy)]dp dyr
a ¢ k
= Y;Z;i]f B-(R+7r")-(cosky, — cos ki) /q51 sin ¢ <tan %) do
_ Ypdn¢®(0)
p

PhN k

[(Tk_ci)], (19)

where 6() is a Dirac delta function: 6(¢p — ¢™) = 1 when ¢ = ¢™, and = 0 when ¢ #¢™*. And, the
transverse modal control force can be rewritten as

/ / LE(hy) Uy R sin  dp

6(M‘¢s1n¢>) 0
//{aqs{ o ] ag Min <05 9)

Rsin ¢[Ng, + lel//]}

thk

PhN k
1

a(M;,)
+sm¢a¢[ oy ]

k
—CR(k + cos ¢) (tan %) cos k| dop dy. (20)
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Note that
%[%W} a(; [MW cos§ 1 sin ¢ (Z}f"")]
a¢[M¢¢cosq5] a¢[ sin ¢ (a¢¢)]
¢[ 5 €OS @] + sin ¢ ¢[ (Zb“’)] +COS¢8(];2)¢)

an? N¢ bb = NW, ¢ b= MW Then, the transverse control force is reduced to
/ L5(6) Usi R sin  dep

phN
M5, oM,
phzvk/ /{ a¢>[ 5 ]“"S‘f’ o

k
- siri o0 { ((M w)} Rsin ¢[Ny,, + Nl‘W]} - | —CR(k + cos ¢) (tan %) cos ktﬁ] de dy
= O ) e

where the transverse control action (T k_ wans) and its contributing meridional and circumferential
membrane/bendlng components, Le. (Tk nans) - (Tk_tl ans)¢ bend T (Tk_nans)nj/ bend + (Tk_trans)¢ mem T
(T k_,mm)l/, mem» Wil be explicitly deﬁned next. Unlike the meridional and the circumferential
control actions, the transverse action requires integration by parts to reveal detailed micro-control
characteristics. We analyze the transverse control action in Eq. (21) term by term, beginning with
the first term related to the meridional control moment,

i / / [ ! ‘M’)] [~ Un]dg dy
1 vy ¢, X
= DI, / / —CR(k + cos ¢) <tan %) cos ki - sin ¢ - 1 Y,,dz1 *
v b
55100 1) = 80 — G — ) — 1y~ )]y
k
= Y/p);ﬁff <_ %R . ra> - (sinky, — sin k%){ —(k + cos ¢,) (tan %) sin ¢,

k
(k* + 2k cos ¢, + cos 2¢,) <tan ﬁ)

k
— (k + cos qﬁl)(tan%) sin q')l] — 7

— (K + 2k cos ¢, + cos 2¢,) <tan %) ] } (22a)
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The second term due to the meridional control moment becomes

// s¢>( "’”Q - Uyl d dy

Iz 472 q§ k
/ / —CR(k +cos )| tan= | cosky - cos¢-r'Y,ds3 ¢"
thk v, o 2

[0 — d1) = 3D — PINus(W — Y1) — us(f — py)] dop dy

 Y,du¢*[ CR . |
= thk (-7 V> (Slnklﬂz—SIHklpl)

PhN k

k

k
- [(k + cos ¢) (tan %) cos ¢, — (k + cos ¢,) (tan %) cos ¢2] . (22b)

Combining Egs. (22a) and (22b) yields the control action from the meridional control moment:
[Y,d319°(2)/ p][(Tk_,,,anS)(b’bend]. Then, the third term of the circumferential control moment in the

transverse control action becomes

o(My,)
thk / /¢ sm(/)alp{ o } [=Unldody

V ¢\ ! a
:thk /1 / —CR(k—&-cosd))(tanE) cosktp-sind)-r Y, d¢

[us(dp — ¢1) — ud(¢p — P2l = [5(1# — 1) — oY — ¥p)]do dy

oy
_ 1 d32¢ (—CR - *){(—cos ki, — cos ki) + k(sin kyy, — sin ki,)}

(152 ¢ k 1
></¢1 (k+cos¢)<tan§> mdqﬁ

_ Ypd32 ¢a(t) 7
o

[(T_trans) y penal- (22¢)

Finally, the fourth term of the transverse action related to the meridional and circumferential
membrane control forces becomes

phNj /l/, /¢ —Rsin ¢[Ngy + Ny, 1- [ Us] dg dys

2R k
= il /l /l 2CR?(k + cos ¢) <tan %) cosky - sin ¢ - Y,d3 ¢*
[u(p — dy) — u(P — P)Nus(b — by) — us(b — ¥y)1dp dyr
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_ Y,d19°
"~ phNi

_ YpdSI(,ba([)
0

N
2kR2> (smkx/Jz—smklpl)/ (k + cos ¢) (tan ) sin ¢ d¢

[( T k_trans)d),mem + (Tk_ trans)./,,mgm] . (22d)

Note that the meridional and the circumferential membrane control forces (i.e., Ny and N./Cn//)
appear equal, due to the two piezoelectric constants ds; = d3, in hexagonal piezoelectric materials
and each contributes one half the total membrane control action in the above equation.
Accordingly, all three control forces and their detailed micro-control actions in the total control
force Fi (1) = (1/phNy) fl// f¢ {L5(h3) Uk + L (h3) Uy + L5(h3) Uy - R?sin ¢ d¢p dys are defined
and its simplified microscopic contrlbutmg mer1d10ndl/c1rcumferent1al bending and membrane
control components: Fk(t) - [Y d3t (t)/p][(Tk)Total] [Y d3t (t)/p][(Tk merd) + (Tk_cn) +
(T_irans)] are respectively derived in Eqs. (18), (19), and (22a—d), and their detailed microscopic
control actions can be rewritten as

(Tk_merd) = (Tk_mer)(/),bend + (Tk_mer)l//,bend + (Tk_mer)gi),mem + (Tk_mer)l//,mema (23)
(Tk_cir) = (Tk_cir)qb,bend + (Tk_cir)l//,bend + (Tk_cir)¢,m6m + (Tk_cir)lj/,mema (24)
(Tk_trans) = (Tk_tranS)([),bend + (Tk_trans)lp,bend + (Tk_trans)(/),mem + (Tk_trans)lp,mem: (25)

where (T k) p bena AN (Tk)l// pena denote the bending control moment actions resulting from Mg, and
My, (Tk)¢ mem A0 (1) ey denote the membrane control force actions resulting from Ny o and
N sz respectively. Note that the transverse meridional bending control action (T . mms)¢ bena 18 the
summation of Egs. (22a) and (22b) and the transverse circumferential bending control action
(Th trans)y pena 18 €qual to Eq. (22¢). The total membrane control action, Eq. (22d), consists of a
transverse meridional membrane control action (T k_trans) g mem @0 @ transverse circumferential
membrane control action (T k_trans)y mem- SiNCE the effective moment arm r{ = r§ = r* and the
piezoelectric constants ds3; = d3;, magnitudes of these two membrane actions are equal, i.c.,
(T k_trans) . mem = (Tk_,mns)l/,,mem. These detailed microscopic modal control actions and components
corresponding to various design and geometric parameters are analyzed in case studies presented
next.

5. Parametric study of active vibration control

A systematic study of actuator characteristics, micro-control actions, and control effectiveness
of segmented actuator patches on free-edge hemispheric shells is presented in this section.
Parametric analyses of design parameters, such as actuator position, shell thickness, shell
curvature, etc., are conducted to evaluate actuator characteristics and microscopic control
actions. Standard dimensions of the hemispherical shell are as follows: shell curvature radius
R =1 m, shell thickness # = 0.01 m, and piezoelectric actuator thickness /#* = 40 um. Effects of
dimensional changes are compared with those derived from these standard dimensions. Other
actuator material constants and control signal, e.g., Y,d31¢“(¢)/p, are assumed constant, such that
control forces can be calculated when actuator materials and signals are specified. Note that
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although the current piezoelectric materials may not be strong enough to achieve effective control,
these parametric analyses still reveal the actuator’s spatial control actions and desirable locations
for various natural mode controls.

Control characteristics of natural modes (kK = 2, 3,4) are evaluated in case studies. Since the in-
plane meridional and circumferential vibrations are usually small as compared with the transverse
vibration, this study primarily focuses on control effects and micro-control actions that are
essential to the transverse vibration, i.e. (Tk ,mns) The transverse modal control force (T %) Total
and its micro-contributing components, i.e. (Tk)¢ bend> (Tk)‘/, bend> (Tk)¢ om and (7 I)y.mem> Telated
to actuator positions, shell thickness, shell curvature etc. are evaluated next.

5.1. Actuator patch positions

The segmented actuator patches are laminated on the shell at 0-10, 10-20, 20-30, ..., 80-90
meridian degrees and the patch is circumferentially divided at every (2n — 1)/(2k) radians where
n is the number of divisions, n = 1,2, 3, ...,2k, and k is the circumferential wave number. Note
that the circumferential division, i.e., (2n — 1)n/(2k), assures that the patches are divided based on
nodal lines without any phase shift, such that the maximal control effect can be achieved. Fig. 3
illustrates the actuator patch segmentation designed for the 4th hemispheric shell mode.

The overall modal control force of patch actuators (i.e., including the surface integration over
the patch) is calculated for the k = 2, 3,4 natural modes. With the segmented actuator patches
designed as discussed previously, i.e., (2n — 1)n/(2k), the in-plane control actions (Ti_mer) and
(Ti_cir) are zero, due to the spatial effect that cos ki, and cos ki, become zero when specific
circumferential angles are considered in Eqgs. (18) and (19). Thus, only the transverse control
action (T_yams) contributes to the overall control action (7%), which includes (1) micro-control
actions induced by control moments, i.e. (T k_trans) g, bend. and (Tk_,,,m)w,bend, and (2) those induced
by membrane control forces, i.e., (Tk tmm)u b mem and (T k_trans)y mem- The total transverse control
actions (T k_wrans) for the k = 2, 3,4 modes at various patch locatlons (from 0-90°) are calculated
and plotted in Fig. 4. Detailed microscopic meridional and circumferential control actions
including the membrane control components and the bending moment control components for

Free B.C

Fig. 3. Piezoelectric actuator patch positions for the £ = 4 mode.
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Meridian position (degree)

Fig. 4. Total modal control action (T_wans) at various actuator locations (k = 2, 3, 4). :k =2mode; B: k = 3 mode;
A: k =4 mode.
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10 A

Control action
(o))

0 : —
0-10  10-20  20-30  30-40  40-50 50-60 60-70  70-80  80-90

Meridian position (degree)

Fig. 5. Micro-modal control actions at various actuator locations (k =2). 4: (Tk_,,m)d,’hem,; B (fk_,,.a,,s)wqhem,; A:
(Tk,tranx)qb,mgm; Xt (Tk,trans)l//,mgm; *: (Tk)~

the k£ = 2, 3,4 modes are respectively calculated and summarized in Figs. 5-7, and so is Ny plotted
in Fig. 8.

Fig. 4 illustrates that the control action increases when the actuator patch moves from the pole
to the free edge and it decreases at higher natural modes. Observing Figs. 5-7 suggests that (1) the
total control action decreases when the circumferential wave number (or the mode) increases
and (2) the membrane components, (Tk)(l),mem and (7} i)y mem> dominate the overall control action.
Fig. 8 shows that N increases when the mode increases, which results in a reduced control action
at higher modes, since & x Ny is on the denominator of the control force definition.

5.2. Shell thickness

The bending behavior becomes relatively significant in a thicker shell. Variation of shell
thickness is to evaluate the thickness effect to actuation characteristics. The hemispherical shell
thickness is assumed to be changing from 1 to 6 cm, while the standard shell radius R remains at
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Meridian position (degree)

Fig. 6. Modal control actions at various actuator locations (k =3). ¢: (f“kf,m,,_v)wend; B (f“kf,m,,x)w’bend; A
(Tk_trans)(p,mgm; X (Tk_trans)x//,mem; *: (T/c)

Control action

o= —————%

0-10 10-20  20-30 30-40 40-50 50-60 60-70 70-80  80-90

Meridian position (degree)

Fig. 7. Modal control actions at various actuator locations (k =4). 4: (Tk_,,‘ans)d,,hmd; 8. (Tk_,,.,ms)w,be,,d; A
(Tk,tranx)qb,mgm; X (Tk,tranx)l//,mem; *: (Tk)

Nk
N

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
Meridian position (degree)

Fig. 8. Nj at various actuator locations (k = 2,3,4). ¢: k =2 mode; B: k = 3 mode; A: k = 4 mode.
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Fig. 9. Total modal patch control action (f‘k_,mm) at various shell thickness (position 80-90°, R=1m, k =2,3,4). ¢:
k =2 mode; B&: k = 3 mode; A: k = 4 mode.
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Control action
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Fig. 10. Modal control actions at various shell thickness (position 80-90°, R=1m, k = 2). ¢: (T/L,,Aa,,s)(b,bmd; B
(Tk_trans)z//,bgnd; AW (Tk_trans)</>,n1em; X (Tk_trans);//,mem; *: (Tk)

1 m or diameter of 2 m. The piezoelectric actuator thickness /#¢ is 40 um, located at 80-90°
meridian, and the actuators are circumferentially segmented at every (2n — 1)x/(2k) radians where
n=1,2,3,...,2k. The patch control forces of the k = 24 modes are analyzed and plotted in
Fig. 9. It shows that the control action decreases when the shell thickens, due to increased flexible
rigidity, and it also decreases at higher natural modes. Detailed & = 2-4 modal micro-control
actions of various shell thickness are also calculated and plotted in Figs. 10-12.

These data suggest, again, that the micro-membrane control actions dominate the overall
control action and the control action decreases when the shell thickens or at higher natural modes.
The membrane control force is usually independent of shell thickness, i.e., Egs. (2) and (3).
However, the micro-control actions (Tk)¢ mem and (Tk)np mem are defined in Eq. (22d) resulting in a
reduction of (Tk)¢ mem and (Tk)w mem When the shell thickness / increases. On the other hand, the
bending control actions (k) penq and (7, i)y.bena Usually influenced by the transverse location
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Control action
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Shell thickness (m)

Fig. 11. Modal control actions at various shell thickness (position 80-90°, R=1m, k = 3). ¢: (f“kf,,.a,,s)(b,bmd; B
(Tk_trans)z//,hend; A (Tk_rrans)(/;,mem; X (Tk_rrans).p,mem; *: (Tk)

Control action

Shell thickness (m)

Fig. 12. Modal control actions at various shell thickness (position 80-90°, R=1m, k =4). ¢: (T/U,A,,,,x)qb,bmd; B
(Tk_trans)z//,bgnd; AW (Tk_tr‘ans)</>,n1em; X (Tk_trans);//,mem; *: (Tk)

r“ = (h/2+ h?/2), i.e., Egs. (4) and (5), show little variation, since the actions are defined in
Eqgs. (22a, b) and 4“/(h x Ny) is very small.

5.3. Radius of curvature

Next, the hemispherical shell radius changes from 1 to 2 m, with a standard shell thickness
h = 0.01 m. The piezoelectric actuator thickness 4 remains at 40 pm, located at 80-90° meridian,
and the actuators are circumferentially segmented at every (2n — 1)n/(2k) radians. The patch
actuator induced control actions of modes k = 2,3,4 are presented in Fig. 13, in which the
modal control action decreases as the radius of curvature increases or at higher natural modes.
Detailed micro-control actions resulting from the meridional/circumferential membrane/bending
components of modes k = 2,3,4 are respectively calculated and plotted in Figs. 14-16. Again,
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Fig. 13. Total modal patch control actions (fk_mms) at various shell radius (position 80-90°, # = 0.01 m, k = 2,3,4).
¢: k=2mode; B: k =3 mode; A: k =4 mode.
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o= — -— » - |
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Fig. 14. Modal control actions at various shell radius (position 80-90°, 7 = 0.01 m, k = 2). ¢: (ka,m,,s)«,,bmd; B
(Tk_trans)zl,,bend; A (Tk_trans)d;’mem; X (Tk_trans);//,mgm; *: (Tk)
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Fig. 15. Modal con}rol actions at va}rious shell radiusA (position 80-90°, 7 =0.01 m, k = 3). 4: (Tk_,mm)(p,bend; B
(Tk_trans)xl,,bend; A (Tk_rrans)qb,mem; X (Tk_rrans)./,,mem; *: (Tk)
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Fig. 16. Modal con}rol actions at va}rious shell radiusA (position 80-90°, 7 =0.01 m, k =4). ¢: (f‘k_,mm)d),beﬂd; B
(Tk,trans)lp,bend; A (Tk,rr(mx)q';,mem; X (Tk,rranx);//,mem; *: (Tk)

1 1.2 1.4 16 18 2

Shell radius (m)

Fig. 17. N at various shell radius (k = 2,3,4). ¢: k =2 mode; B: k = 3 mode; A: k = 4 mode.

these data indicate that the primary contributing components are the two micro-membrane
control actions which decrease due to increased radius of curvature.

Fig. 17 shows that N, significantly increases as the radius increases, resulting in reduction of
control actions as the radius increases. And similar to the first two cases, N, increases at higher
modes and it causes reduction of control actions at higher natural modes.

5.4. Control effectiveness

With the segmentation technique described previously, i.e., segmented at every (2n — 1)r/(2k),
the effective actuator area actually increases as the actuator patch moving from the pole down to
the boundary rim and it decreases as the natural mode & increases. Fig. 18 illustrates three types
(k= 2,3,4) of actuator layouts and their actuator size variations. Fig. 19 shows the effective
actuator area of three types of layouts increases as the shell radius increases.
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Fig. 18. Effective actuator sizes at various patch locations (R =1 m). 4: type k = 2; B : type k = 3; A: type k = 4.
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Fig. 19. Effective actuator sizes versus shell radiuses (position 80-90°). #: type k = 2; B: type k = 3; A: type k
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Fig. 20. Normalized control actions at various locations (R =1 m, 2 = 0.01 m). ®: k =2 mode; B: k = 3 mode; A:

k = 4 mode.
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Fig. 21. Normalized control actions at various shell thickness (position 80-90°, R=1m). ¢: k =2 mode; B: k =3
mode; A: k =4 mode.
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1 1.2 1.4 1.6 1.8 2
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Fig. 22. Normalized control actions at various shell radius (position 80-90°, 7 = 0.0l m). ¢: k =2 mode; B: k =3
mode; A: k =4 mode.

Since the actuator sizes are not constant, consequently the control actions need to be
normalized such that the true control authority per actuator area can be inferred. These effective
(normalized) control actions of three actuator layouts are presented in Figs. 20-22. These data
suggest that (1) the effective control effect reaches maximal at the free edge, positioned at 80-90°
meridian, Fig. 20, (2) the effective control action decreases as the shell thickness increases, Fig. 21,
and (3) the effective (normalized) control action decreases when the shell radius increases, Fig. 22.

6. Conclusions

Actuation and control of hemispherical shells using segmented distributed piezoelectric
actuators are investigated in this study. Mathematical models for spherical/hemispherical shells
laminated with distributed actuator layers were defined first, followed by formulations of
distributed control forces and their contributing microscopic meridional/circumferential
membrane and bending control actions based on a simplified bending approximation theory.
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Detailed modal control forces, directional micro-control actions, and normalized control effects
of free-edge hemispheric shells with various geometric parameters (or design parameters) were
evaluated. With a delicate modal-dependent segmentation mechanism, i.e., (2n — 1)n/(2k), effects
of the in-plane meridional and circumferential control forces are eliminated from the overall
control actions and that of the transverse control action is retained. The total control action
(T%) 701 depends on actuator locations and modal characteristics, excluding actuator material
properties and control signals. The modal control force Fj(f) can be inferred from the control
action by multiplying actuator parameters, i.e., Y,d31¢“(t)/p, when specific piezoelectric actuator
and control signals are selected. Qualitative parametric analyses of hemispheric shells with
segmented patch actuators suggest that (1) the micro-meridional/circumferential membrane
control actions dominate the overall modal control force; (2) the modal patch control force
increases as the actuator patch moves toward the free edge; (3) the actuation magnitude decreases
at higher natural modes; (4) the modal control force decreases as the shell thickens, due to
increased shell rigidity; (5) the modal control force decreases as the radius of curvature increases
and the shell radius significantly influences the nominal value of Ny; (6) the effective actuator size
enlarges as the patch location moving from the pole to the free boundary rim for a specified &; and
(7) the effective (or normalized) actuator induced control action reaches maximal at the free edge
and it decreases as the shell thickness or the shell radius increases.

These generic guidelines can be applied to design of segmented actuator patches, their spatial
layouts, and control effectiveness of precision hemispheric shells.
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